- Plant Colonization Windows in a Mesic Old Field Succession

ثبت نشده
چکیده

Closed canopy vegetation often prevents the colonization of plant species. Therefore the majority of plant species are expected to appear at the initial phase of post-agricultural succession in mesic forest environment with moderate levels of resources. This hypothesis was tested with data from the BuellSmall Successional Study, NJ, USA, one of the longest continuous fine-scale studies of old-field succession. The study started in 1958, including old fields with different agricultural histories, landscape contexts, and times of abandonment. In each year of the study, the cover values of plant species were recorded in 48 permanent plots of 1 m2 in each field. We analysed the temporal patterns of colonization at plot scale and related these to precipitation data and other community characteristics. The number of colonizing species decreased significantly after ca. 5 yr, coinciding with the development of a continuous canopy of perennial species. However, species turnover remained high throughout the whole successional sequence. The most remarkable phenomenon is the high inter-annual variation of all studied characteristics. We found considerable temporal collapses of vegetation cover that were synchronized among fields despite their different developmental stages and distinctive species compositions. Declines of total cover were correlated with drought events. These events were associated with peaks of local species extinctions and were followed by increased colonization rates. The transitions of major successional stages were often connected to these events. We suggest that plant colonization windows opened by extreme weather events during succession offer optimum periods for intervention in restoration practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathways in Old-field Succession to White Pine: Seed Rain, Shade, and Climate Effects

Trees slowly colonize old fields on sandy outwash in the prairie–forest ecotone of the north-central United States, and in the absence of fire, succession is expected to proceed toward oak woodland. We analyzed whether a case of unusually rapid and spatially extensive invasion by white pine (Pinus strobus) could be explained by the presence of specific temporal or spatial opportunity windows su...

متن کامل

Spatial relationships between plant litter, gopher disturbance and vegetation at different stages of oldfield succession

Fine-scale spatial patterns of small mammal disturbances and local accumulation of plant litter were studied together with the spatial pattern of vegetation in different stages of old-field succession at Cedar Creek Natural History Area, Minnesota, USA. Seven stands from one to 66 years old were sampled. Presence of living plant species, local soil disturbances by pocket gophers (Geomys bursari...

متن کامل

The Interaction of Habitat Fragmentation, Plant, and Small Mammal Succession in an Old Field

We compared the density and spatial distribution of four small mammal species (Microtus ochrogaster, Peromyscus maniculatus, Sigmodon hispidus, and P. leucopus) along with general measures of an old field plant community across two successional phases (1984–1986 and 1994–1996) of an experimental study of fragmentation in eastern Kansas. During the early phase the plant community was characteriz...

متن کامل

Above-ground biomass distribution among species during early old-field succession

The interdependence of species richness and plant biomass has widely been accepted as a general biodiversity rule. However, there is no information about how relationships are established during colonization and how total biomass is distributed among plants. The main objective of this study was to determine the role of several factors which we have hypothetized as affecting biomass distribution...

متن کامل

Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation

Continuous permafrost zones with well-developed polygonal ice-wedge networks are particularly vulnerable to climate change. Thermo-mechanical erosion can initiate the development of gullies that lead to substantial drainage of adjacent wet habitats. How vegetation responds to this particular disturbance is currently unknown but has the potential to significantly disrupt function and structure o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003